Wednesday, December 4, 2013

Kinematika

Kinematika


Kinematika dari benda bergerak

Besaran kinematika untuk partikel klasik: massa m, posisi r, kecepatan v, percepatan a.
Kinematika partikel adalah studi yang mempelajari karakteristik gerak suatu partikel. Posisi suatu partikel didefinisikan sebagai vektor koordinat dari awal titik acuan ke partikel. Sebagai contoh, anggaplah ada sebuah menara setinggi 50 meter di sebelah selatan rumah anda, dimana titik acuannya adalah rumah anda, dengan timur sebagai sumbu-x dan utara sebagai sumbu-y, maka koordinat vektor menara tersebut adalah r=(0, -50, 0). Vektor koordinat di puncak menara adalah r=(0, -50, 50).
Dalam bentuk 3 dimensi, posisi titik P dapat dituliskan sebagai
\mathbf{P} = (x_P,y_P,z_P) = x_P\vec{i} + y_P\vec{j} + z_P\vec{k},
dengan xP, yP, dan zP adalah koordinat Kartesian dan i, j dan k adalah unit vektor yang mengikuti sumbu x, y, dan z. Besar dari vektor posisi |P| adalah jarak antara titik P dengan titik acuan, dapat dituliskan sebagai:
|\mathbf{P}| = \sqrt{x_P^{\ 2} + y_P^{\ 2} + z_P^{\ 2}}.
Trajektori dari sebuah partikel adalah fungsi vektor terhadap waktu, P(t), yang mendefinisikan kurva yang dibentuk dari partikel yang bergerak, yang akan memberikan persamaan
 \mathbf{P}(t) = x_P(t)\vec{i} + y_P(t)\vec{j} +z_P(t) \vec{k},
dengan koordinatxP, yP, dan zP masing-masing adalah fungsi waktu.

Kecepatan dan kelajuan

Kecepatan sebuah partikel adalah vektor yang menunjukkan arah dan besar dari perubahan posisi vektor, bagaimana posisi sebuah benda berpindah tiap waktu. Anggap rasio perbedaan 2 posisi partikel dibagi dalam interval waktu sama, maka kecepatan rata-rata pada interval tersebut adalah
 \overline{\mathbf{V}} = \frac {\Delta \mathbf{P}}{\Delta t} \ ,
dengan ΔP adalah perubahan posisi vektor per selang waktu Δt.
Ketika limit ketika interval waktu Δt menjadi semakin kecil, maka kecepatan rata-rata menjadi turunan waktu dari posisi vektor:
 \mathbf{V} = \lim_{\Delta t\rightarrow0}\frac{\Delta\mathbf{P}}{\Delta t} = \frac {d \mathbf{P}}{d t}=\dot{\mathbf{P}} = \dot{x}_p\vec{i}+\dot{y}_P\vec{j}+\dot{z}_P\vec{k}.
Maka, kecepatan adalah besarnya perubahan posisi per satuan waktu.
Kelajuan dari suatu objek adalah besar |V| dari suatu kecepatan. Kelajuan merupakan besaran skalar:
 |\mathbf{V}| = |\dot{\mathbf{P}} | =  \frac {d s}{d t},
dengan s adalah panjang jalur lintasan total yang ditempuh partikel. Kelajuan adalah besaran yang selalu bernilai positif.

Gerak Relatif

Dapat ditunjukkan dengan persamaan matematika vektor sederhana berikut yang memperlihatkan suatu penjumlahan vektor : gerak A relatif terhadap O sama dengan gerak relatif B terhadap O ditambah dengan gerak relatif A terhadap B :
r_{A/O} = r_{B/O} + r_{A/B} \,\!

Gerakan Koordinat

Salah satu persamaan dasar dalam kinematika adalah persamaan yang menggambarkan tentang turunan dari sebuah vektor yang berada dalam suatu sumbu koordinat bergerak. Yaitu : turunan terhadap waktu dari sebuah vektor relatif terhadap suatu koordinat diam, sama dengan turunan terhadap waktu vektor tersebut relatif terhadap koordinat bergerak ditambah dengan hasil perkalian silang dari kecepatan sudut koordinat bergerak dengan vektor itu. Dalam bentuk persamaan :
\left.\frac{dr(t)}{dt}\right|_{X,Y,Z} = \left.\frac{dr(t)}{dt}\right|_{x,y,z} + \omega \times r(t)
dimana :
r(t) adalah sebuah vektor
X, Y, Z adalah sebuah sumbu koordinat tetap / tak bergerak
x, y, z adalah sebuah sumbu koordinat berputar
\omega adalah kecepatan sudut perputaran koordinat

Sistem Koordinat

Sistem Koordinat Diam

Pada sistem koordinat ini, sebuah vektor digambarkan sebagai suatu penjumlahan dari vektor-vektor yang searah dengan sumbu X, Y, atau Z. Umumnya \vec i \, \! adalah sebuah vektor satuan pada arah X, \vec j \, \! adalah sebuah vektor satuan pada arah Y, dan \vec k \, \! adalah sebuah vektor satuan pada arah Z.
Vektor posisi \vec s \, \! (atau \vec r \, \!), vektor kecepatan \vec v \, \! dan vektor percepatan \vec a \, \!, dalam sistem koordinat Cartesian digambarkan sebagai berikut :
\vec s = x \vec i + y \vec j + z \vec k \, \!
\vec v = \dot {s} = \dot {x} \vec {i} + \dot {y} \vec {j} + \dot {z} \vec {k} \, \!
 \vec a = \ddot {s} = \ddot {x} \vec {i} + \ddot {y} \vec {j} + \ddot {z} \vec {k} \, \!
catatan :  \dot {x} = \frac{dx}{dt} ,  \ddot {x} = \frac{d^2x}{dt^2}

Sistem Koordinat Bergerak 2 Dimensi

Sistem koordinat ini hanya menggambarkan gerak bidang yang berbasis pada 3 vektor satuan orthogonal yaitu vektor satuan \vec i \!, dan vektor satuan \vec j \! sebagai sebuah bidang dimana suatu obyek benda berputar terletak/berada, dan \vec k \! sebagai sumbu putarnya.
Berbeda dengan sistem koordinat Cartesian di atas, dimana segala sesuatunya diukur relatif terhadap datum yang tetap dan diam tak berputar, datum dari koordinat-koordinat ini dapat berputar dan berpindah - mengikuti gerakan dari benda atau partikel pada suatu benda yang diamati. Hubungan antara koordinat diam dan koordinat berputar dan bergerak ini dapat dilihat lebih rinci pada Transformasi Orthogonal.

No comments:

Post a Comment